¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (1 ÆäÀÌÁö)
    1

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (2 ÆäÀÌÁö)
    2

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (3 ÆäÀÌÁö)
    3

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (4 ÆäÀÌÁö)
    4

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (5 ÆäÀÌÁö)
    5

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (6 ÆäÀÌÁö)
    6

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (7 ÆäÀÌÁö)
    7

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (8 ÆäÀÌÁö)
    8

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (9 ÆäÀÌÁö)
    9

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (10 ÆäÀÌÁö)
    10

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (11 ÆäÀÌÁö)
    11

  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    11 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (1 ÆäÀÌÁö)
    1

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (2 ÆäÀÌÁö)
    2

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (3 ÆäÀÌÁö)
    3

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (4 ÆäÀÌÁö)
    4

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (5 ÆäÀÌÁö)
    5

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (6 ÆäÀÌÁö)
    6

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (7 ÆäÀÌÁö)
    7

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (8 ÆäÀÌÁö)
    8

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (9 ÆäÀÌÁö)
    9

  •  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation  Big Mart Sales Prediction   (10 ÆäÀÌÁö)
    10



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    10 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§Æ® ¹ßÇ¥ÀÚ·á Columbia Univ Project Deliverable Presentation Big Mart Sales Prediction

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  ¹Ì±¹´ëÇÐ ¾Ö³Î¸®Æ½½º, ºòµ¥ÀÌÅÍ ÆÇ¸Å ¿¹Ãø¸ðµ¨ ÇÁ·ÎÁ§~.pptx   [Size : 1 Mbyte ]
ºÐ·®   11 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

º»¹®/³»¿ë
_SLIDE_1_
Big Mart Sales Prediction

11. 20. 2xxx Ver.1

APAN 5200
1
_SLIDE_2_
Resource:https://www.analyticsvidhya.com/blog/2xxx/02/bigmart-sales-solution-top-20/
2
_SLIDE_3_
Problem Statement
Background
The data scientists at BigMart have collected 2013 sales data for 1559 products across 10 stores in different cities. Also, certain attributes of each product and store have been defined.
Objective
The aim is to build a predictive model and find out the sales of each product at



ÀúÀÛ±ÇÁ¤º¸
*À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ Áø½Ç¼º¿¡ ´ëÇÏ¿© ȸ»ç´Â º¸ÁõÇÏÁö ¾Æ´ÏÇϸç, ÇØ´ç Á¤º¸ ¹× °Ô½Ã¹° ÀúÀ۱ǰú ±âŸ ¹ýÀû Ã¥ÀÓÀº ÀÚ·á µî·ÏÀÚ¿¡°Ô ÀÖ½À´Ï´Ù. À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ ºÒ¹ýÀû ÀÌ¿ë, ¹«´Ü ÀüÀ硤¹èÆ÷´Â ±ÝÁöµÇ¾î ÀÖ½À´Ï´Ù. ÀúÀÛ±ÇÄ§ÇØ, ¸í¿¹ÈÑ¼Õ µî ºÐÀï¿ä¼Ò ¹ß°ß½Ã °í°´¼¾ÅÍÀÇ ÀúÀÛ±ÇÄ§ÇØ½Å°í ¸¦ ÀÌ¿ëÇØ Áֽñ⠹ٶø´Ï´Ù.
📝 Regist Info
I D : jhpn*****
Date : 2021-01-22
FileNo : 21012355

Cart