¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (3 ÆäÀÌÁö)
    3


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    3 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È   (3 ÆäÀÌÁö)
    3



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    3 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü´ä¾È

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-2Â÷Áß°£-¸ð¹ü~.pdf   [Size : 102 Kbyte ]
ºÐ·®   3 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

¸ñÂ÷/Â÷·Ê
Problem 1. Indicate whether the statement is true(T) or (5) If A is an n¡¿n matrix, and if the linear system Ax = b is consistent for every vector b in Rn , then TA : Rn ¡æ false(F). Justify your answer. [each 3pt] (1) If T1 : R ¡æ R (F)
2 3 n m
and T2 : R
m
¡æ R are linear trans-
k
formations, and if T1 is not onto, then neither is T2 T1 . Problem 3. Determine whether the linear transformation Solve Take T1 : R ¡æ R given by T1 (x, y) = (x, y, 0) is one-to-one and/or onto. Justify ...
º»¹®/³»¿ë

Problem 1. Indicate whether the statement is true(T) or (5) If A is an n¡¿n matrix, and if the linear system Ax = b is consistent for every vector b in Rn , then TA : Rn ¡æ false(F). Justify your answer. [each 3pt] (1) If T1 : R ¡æ R (F)
2 3 n m

and T2 : R

m

¡æ R are linear trans-

k

formations, and if T1 is not onto, then neither is T2 T1 . Problem 3. Determine whether the linear transformation Solve Take T1 : R ¡æ R given by T1 (x, y) = (x, y, 0) is one-to-one and/or onto. Justify your answer. [each 5pt] and T2 : R3 ¡æ R2 given by T2 (x, y, z) = (x, y). Then (1) T : R3 ¡æ R3 , given by T (x, y, z) = (4x, 2x + y, x T is not onto, but T T is onto.
1 2 1

3y). (2) If the characteristic polynomial of A is p(¥ë) = ¥ë ¥ën1 + ¥ë, then A is a singular matrix. (T) Solve Since det(A) = (1)n p(0) = 0, A is a singular matrix. (3) If A is orthogonal, then (det(A))2 = 1. (T) Solve Since A1 = AT and det(A) = det(AT), 1 = det(AA1) = det(A) det(A1) = (det(A))2 . (4) The determi¡¦(»ý·«)



📝 Regist Info
I D : comm***
Date : 2017-04-03
FileNo : 17042094

Cart