¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (3 ÆäÀÌÁö)
    3


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    3 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)   (3 ÆäÀÌÁö)
    3



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    3 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü´ä¾È (1)

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ Á·º¸ 2Çбâ-¼±´ë½ÃÇè-1Â÷Áß°£-¸ð¹ü~.pdf   [Size : 102 Kbyte ]
ºÐ·®   3 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

º»¹®/³»¿ë
Problem 1. Indicate whether the statement is true(T) or false(F). Justify your answer. [each 3pt] (1) If A and B are invertible matrices, then A + B is also invertible. (F) Solve Take B = A, and A is an any invertible matrix. Then, A and B are invertible, but A + B = O is not invertible.
Problem 2. Indicate whether the statement is true(T) or

(1) If x0 is a vector in Rn , and if v1 and v2 are nonzero vectors in Rn , then the set of all vectors x = x0 + t1 v1 + t2 v2 (t1 , t2 ¡ô R) is a plane. (F)

(2) For nonzero vector a and b in Rn , if a¡Ñ = b¡Ñ , then a = b. (F) Solve In R2 , take a = (1, 0) and b = (1, 0). Then, a¡Ñ = b¡Ñ is y-axis, but a = b. In general, if a¡Ñ = b¡Ñ , then a and b are parallel vectors. (2) A homogeneous linear system with more equations than unknowns has innitely many solutions. (F)

(3) For nonzero vector b ¡ô Rn , if Ax = b has innitely many solutions, then so does Ax = 0. (T) Solve If Ax = 0 has only the trivial solution, then Ax = b has a unique solution or is inconsistent. It is impossible, so Ax = 0 has also innitely many solutions.

(¡¦(»ý·«)

(4) For any m ¡¿ n matrix A, AT A is an m ¡¿ m symmetric (4) If Ax = b and Ax = c are consistent, then so is matrix. (F) Ax = b + c. (T) Solve Since A is an m¡¿n, AT A is an n¡¿n symmetric matrix.

(5) If B has a column of zeros, then so does AB if this product is dened. (T) Solve Put B = b1 Ab1 ... Abi ... b2 . . . bn as a column partition. If bi = 0 for some 1 ¡Â i ¡Â n. Since AB = Abn and Abi = A0 = 0, AB has a column of zeros. (5) If span(S1) = span(S2), then S1 = S2 . (Si is the set of vectors in Rn) (F)




📝 Regist Info
I D : comm***
Date : 2017-04-03
FileNo : 17042093

Cart