¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (3 ÆäÀÌÁö)
    3

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (4 ÆäÀÌÁö)
    4


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    4 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (1 ÆäÀÌÁö)
    1

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (2 ÆäÀÌÁö)
    2

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (3 ÆäÀÌÁö)
    3

  • ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf   (4 ÆäÀÌÁö)
    4



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    4 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  ¿¬¼¼´ë ¼±Çü´ë¼öÇÐ 3Â÷½ÃÇè Á·º¸.pdf.pdf   [Size : 118 Kbyte ]
ºÐ·®   4 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

¸ñÂ÷/Â÷·Ê
Problem 1. Indicate whether the statement is true(T) or (5) If A is a symmetric matrix, then eigenvectors from dierent eigenspaces are orthogonal. (T) false(F). Justify your answer. [each 3pt] (1) If T : Rn ¡æ Rn is a linear operator, and if [T]B = [T]B with respect to two bases B and B for Rn , then B = B . (F) Solve If T is a zero operator, then [T]B = O for any basis for R . So [T]B = [T]B but B = B . So (¥ë1 ¥ë2)(x1 x2) = 0 and thus x1 x2 = 0.
n
solve Suppose that x1 ¡ô E¥ë1 and x...
º»¹®/³»¿ë

Problem 1. Indicate whether the statement is true(T) or (5) If A is a symmetric matrix, then eigenvectors from dierent eigenspaces are orthogonal. (T) false(F). Justify your answer. [each 3pt] (1) If T : Rn ¡æ Rn is a linear operator, and if [T]B = [T]B with respect to two bases B and B for Rn , then B = B . (F) Solve If T is a zero operator, then [T]B = O for any basis for R . So [T]B = [T]B but B = B . So (¥ë1 ¥ë2)(x1 x2) = 0 and thus x1 x2 = 0.
n

solve Suppose that x1 ¡ô E¥ë1 and x2 ¡ô E¥ë2 are eigenvectors from dierent eigenspaces. Then, (¥ë1 x1) x2 = (Ax1) x2 = x1 (AT x2)

= x1 (Ax2) = x1 (¥ë2 x2)

(2) If V and W are distinct subspaces of Rn with the same dimension, then neither V nor W is a subspace of the other. (T) Solve With out loss of generality, if V is a subspace of W . Since dim(V) = dim(W) and V is a subspace of W , V = W . It is a contradiction. Problem 2. Indicate whether the statement is true(T) or false(F). [each 2pt] (1) If A = U ¥ÒV T is a singula¡¦(»ý·«)



ÀúÀÛ±ÇÁ¤º¸
*À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ Áø½Ç¼º¿¡ ´ëÇÏ¿© ȸ»ç´Â º¸ÁõÇÏÁö ¾Æ´ÏÇϸç, ÇØ´ç Á¤º¸ ¹× °Ô½Ã¹° ÀúÀ۱ǰú ±âŸ ¹ýÀû Ã¥ÀÓÀº ÀÚ·á µî·ÏÀÚ¿¡°Ô ÀÖ½À´Ï´Ù. À§ Á¤º¸ ¹× °Ô½Ã¹° ³»¿ëÀÇ ºÒ¹ýÀû ÀÌ¿ë, ¹«´Ü ÀüÀ硤¹èÆ÷´Â ±ÝÁöµÇ¾î ÀÖ½À´Ï´Ù. ÀúÀÛ±ÇÄ§ÇØ, ¸í¿¹ÈÑ¼Õ µî ºÐÀï¿ä¼Ò ¹ß°ß½Ã °í°´¼¾ÅÍÀÇ ÀúÀÛ±ÇÄ§ÇØ½Å°í ¸¦ ÀÌ¿ëÇØ Áֽñ⠹ٶø´Ï´Ù.
📝 Regist Info
I D : comm***
Date : 2017-04-03
FileNo : 17042092

Cart