¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • ¿¬¼¼´ë °è·®°æÁ¦ÇÐ Á·º¸ econo1 fall final exam    (1 ÆäÀÌÁö)
    1


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    1 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • ¿¬¼¼´ë °è·®°æÁ¦ÇÐ Á·º¸ econo1 fall final exam    (1 ÆäÀÌÁö)
    1



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    1 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

¿¬¼¼´ë °è·®°æÁ¦ÇÐ Á·º¸ econo1 fall final exam

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  ¿¬¼¼´ë °è·®°æÁ¦ÇÐ Á·º¸ econo1 fall final exam (2).doc   [Size : 82 Kbyte ]
ºÐ·®   1 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

¸ñÂ÷/Â÷·Ê
Final Exam for Econometrics(1)
Fall 2014
Prof. Tae-Hwan Kim

1. [33 points] Consider a simple regression given by where is the number of observations. Now, the unit of the explanatory variable () has changed so that the new explanatory variable (denoted by ) is related to as where is a constant between 0 and 1. Using the new explanatory variable, the same regression is re-run resulting in the following output: . Decide which of the following is changed and which is not; (i) t...

º»¹®/³»¿ë
Final Exam for Econometrics(1)
Fall 2014
Prof. Tae-Hwan Kim

1. [33 points] Consider a simple regression given by where is the number of observations. Now, the unit of the explanatory variable () has changed so that the new explanatory variable (denoted by ) is related to as where is a constant between 0 and 1. Using the new explanatory variable, the same regression is re-run resulting in the following output: . Decide which of the following is changed and which is not; (i) the intercept OLS estimator, (ii) the slope OLS estimator. Explain your reasoning.

2. [33 points] Consider ; where and are vectors given by and we don¡¯t know if is normally distributed. Suppose that all the asymptotic assumptions are true. We are interested in the following null hypothesis: . You have learned that the asymptotic Wald statistic (given by ) converges to in distribution. Prove or disprove that converges to zero in probability where is the R-square obtained from¡¦(»ý·«)



📝 Regist Info
I D : comm***
Date : 2017-04-03
FileNo : 17042083

Cart