ÀÚ·á¼³¸í
ÀÚ¿¬·Î±×¿Í Áö¼öÇÔ¼ö, ¿ªÇÔ¼ö, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ¿¡ ´ëÇÑ
theorem°ú definitionÀ» Á¤¸®ÇØ ³õÀº ¿µ¾îÀÚ·á
½ÃÇè Àü¿¡ Á¤¸®Çؼ º¸±â ÁÁÀº ÀÚ·áÀÓ.
º»¹®/³»¿ë
6. The Logarithm, the Exponential, and the Inverse Trigonometric Functions.
Definition. If x is a positive real number, we define the natural logarithm of x, denoted temporarily by L(x), to be the integral L(x) = .
Theorem 6.1. The logarithm function has the following properties:
(a) L(1) = 0
(b) L`(x) = 1/x for every x > 0
(c) L(ab) = L(a) + L(b) for every a > 0, b > 0
- t/a
Theorem. 6.2. For every real number b there is exactly one positive real number a whose logarithm, L(a) is equal to b.
Definition. We denote by e that number for which L(e) = 1.
Definition. If b > 0, b ¡Á 1, and if x > 0, the logarithm of x to the base b is the number
logbx = . where the logarithms on the right are natural logarithms.
Point. ¡ò 1/x dx = log x + C
Point. ¡ò du / u = log u +C
Point. ¡ò f`(x)dx / f(x) = log f(x) + C.
Point. L0(x) = log|x| = .
Definition. For any real x, we define E(x) to be that number y whose logarithm is x. That is, y=E(x) means that L(¡¦(»ý·«)
= 1 / c
Point. Integration by partial fractions.
- ÁøºÐ¼öÀ϶§ 1Â÷ fraction À¸·Î ºÐÇØ
- °¡ºÐ¼öÀ϶§ A + ÁøºÐ¼ö ÇüÀ¸·Î ¸¸µé¾î 1Â÷ fraction À¸·Î ºÐÇØ.
- 1Â÷·Î ºÐÇØ ¾È µÉ ¶§, ºÐ¸ð¿¡ x ºÙ¿©¼ Â÷¼ö ¸ÂÃçÁÙ °Í.
-- ¡ò 1 / 2Â÷½Ä ÀÌ µÆÀ»¶©, ºÐ¸ð¸¦ Á¦°öÇüÀ¸·Î ¹Ù²ã¼ u2 + a2 ÇüÀ¸·Î ±×´ÙÀ½ u = av ÇüÀ¸·Î º¯È¯.
Âü°í¹®Çå
Definition. If x is a positive real number, we define the natural logarithm of x, denoted temporarily by L(x), to be the integral L(x) = .
Theorem 6.1. The logarithm function has the following properties:
(a) L(1) = 0
(b) L`(x) = 1/x for every x > 0
(c) L(ab) = L(a) + L(b) for every a > 0, b > 0
- t/a
Theorem. 6.2. For every real number b there is exactly one positive real number a whose logarithm, L(a) is equal to b.
Definition. We denote by e that number for which L(e) = 1.