ÀÚ·á¼³¸í
[ÆÇ¸ÅÁßÁö] ±¸¸Åȸ¿ø¿äû ÆÇ¸ÅÁßÁö(»çÀ¯) : ÀÚ·á³»¿ëÀÌ ºÎÁ·ÇØ¿ä.. -------> Christian Å©¸®½ºÂù ºÐ¼®ÈÇÐ 6ÆÇ ¼Ö·ç¼ÇÀÔ´Ï´Ù.
chapter1 - 26±îÁö ¸ðµÎ ÀÖ½À´Ï´Ù.
°øºÎÇϽôµ¥ Å« µµ¿ò µÇ½Ã±æ ¹Ù·¡¿ä.^_____^
º»¹®/³»¿ë
CALCULUS OF VARIATIONS MA 4311 LECTURE NOTES
I. B. Russak Department of Mathematics Naval Postgraduate School Code MA/Ru Monterey, California 93943 July 9, 2002
c 1996 - Professor I. B. Russak
1
Contents
1 Functions of n Variables 1.1 Unconstrained Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Examples, Notation 2.1 Notation & Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Shortest Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 First Results 3.1 Two Important Auxiliary Formulas: . . . . . . . . . . . . . . . . . . . . . . . 3.2 Two Important Auxiliary Formulas in the General Case . . . . . . . . . . . . 4 Variable End-Point Problems 4.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Higher Dim¡¦(»ý·«)