¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (1 ÆäÀÌÁö)
    1

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (2 ÆäÀÌÁö)
    2

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (3 ÆäÀÌÁö)
    3

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (4 ÆäÀÌÁö)
    4

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (5 ÆäÀÌÁö)
    5

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (6 ÆäÀÌÁö)
    6

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (7 ÆäÀÌÁö)
    7

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (8 ÆäÀÌÁö)
    8

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (9 ÆäÀÌÁö)
    9

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (10 ÆäÀÌÁö)
    10

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (11 ÆäÀÌÁö)
    11

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (12 ÆäÀÌÁö)
    12

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (13 ÆäÀÌÁö)
    13

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (14 ÆäÀÌÁö)
    14

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (15 ÆäÀÌÁö)
    15


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    15 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (1 ÆäÀÌÁö)
    1

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (2 ÆäÀÌÁö)
    2

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (3 ÆäÀÌÁö)
    3

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (4 ÆäÀÌÁö)
    4

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (5 ÆäÀÌÁö)
    5

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (6 ÆäÀÌÁö)
    6

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (7 ÆäÀÌÁö)
    7

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (8 ÆäÀÌÁö)
    8

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (9 ÆäÀÌÁö)
    9

  • Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®   (10 ÆäÀÌÁö)
    10



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    10 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  Á¦¾î°øÇÐ - ¸ÅÆ¿·¦ ·¹Æ÷Æ®.hwp   [Size : 559 Kbyte ]
ºÐ·®   16 Page
°¡°Ý  3,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

¸ñÂ÷/Â÷·Ê
¡Þ 2Â÷ Æó·çÇÁ Àü´ÞÇÔ¼ö

¨ç tftoolÀ» µ¿ÀÛ½ÃŲ´Ù.

¨è G(s)ÀÇ ±Ø°ú ¿µÁ¡ ÀÔ·ÂÀ» ÀÔ·ÂÇÑ´Ù.

¨é Àü´ÞÇÔ¼ö¸¦ °è»êÇÑ´Ù.

¨ê matlab ¿¬»ê°úÁ¤

G=
Transfer function:
4500
s^2 + 361.2 s
Plant numerator and denominator Coefficients are
num =
0 0 4500
den =

1.0000 361.2000 0

Zeros of G are
zeroG =
Empty matrix: 1-by-0
Poles of G are
poleG =
0 -361.2000
Plant in zero-pole form is
Zero/pole/gain:
4500
s (s+361.2)

¨ë timetool¿¡¼­...

º»¹®/³»¿ë
¡Þ 2Â÷ Æó·çÇÁ Àü´ÞÇÔ¼ö



¨ç tftoolÀ» µ¿ÀÛ½ÃŲ´Ù.
¨è G(s)ÀÇ ±Ø°ú ¿µÁ¡ ÀÔ·ÂÀ» ÀÔ·ÂÇÑ´Ù.

¨é Àü´ÞÇÔ¼ö¸¦ °è»êÇÑ´Ù.
¨ê matlab ¿¬»ê°úÁ¤

G=

Transfer function:
4500
s^2 + 361.2 s

Plant numerator and denominator Coefficients are

num =

0 0 4500
den =

1.0000 361.2000 0

Zeros of G are

zeroG =

Empty matrix: 1-by-0

Poles of G are

poleG =

0 -361.2000

Plant in zero-pole form is

Zero/pole/gain:
4500
s (s+361.2)
¨ë timetool¿¡¼­ `Enter Transfer Function` ¹öưÀ» ´©¸¥´Ù.
¨ì Transfer Function input âÀÌ´Ù.
¨í Àü´ÞÇÔ¼ö G(s)¸¦ °è»êÇÑ´Ù.

¨î Matlab ¸í·Éâ¿¡¼­ ÀÚ¼¼ÇÏ°Ô Ç¥ÇöµÈ ½Ã½ºÅÛ Àü´ÞÇÔ¼ö¿Í ±Ø-¿µÁ¡°ªÀÌ´Ù.

G=

Transfer function:
4500
s^2 + 361.2 s

Gc=

Transfer function:
1

H=

Transfer function:
1

GG_c `open loop

Transfer function:
4500
s^2 + 361.2 s

GG_cH `loop

Transfer function:
4500
s^2 + 361.2 s

GG_c/(1+GG_cH) `¡¦(»ý·«)



📝 Regist Info
I D : leew*****
Date : 2014-01-27
FileNo : 14013010

Cart