¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • [¹ÌÀûºÐ]ÀÚ¿¬·Î±×, Áö¼öÇÔ¼ö, ¿ª, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ    (1 ÆäÀÌÁö)
    1

  • [¹ÌÀûºÐ]ÀÚ¿¬·Î±×, Áö¼öÇÔ¼ö, ¿ª, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ    (2 ÆäÀÌÁö)
    2


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    2 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • [¹ÌÀûºÐ]ÀÚ¿¬·Î±×, Áö¼öÇÔ¼ö, ¿ª, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ    (1 ÆäÀÌÁö)
    1

  • [¹ÌÀûºÐ]ÀÚ¿¬·Î±×, Áö¼öÇÔ¼ö, ¿ª, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ    (2 ÆäÀÌÁö)
    2



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    2 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

[¹ÌÀûºÐ]ÀÚ¿¬·Î±×, Áö¼öÇÔ¼ö, ¿ª, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  6_The_Logarithm_the_Exponential_and_the_Inverse_Trigonometric_Functions.hwp   [Size : 40 Kbyte ]
ºÐ·®   2 Page
°¡°Ý  500 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

ÀÚ·á¼³¸í
ÀÚ¿¬·Î±×¿Í Áö¼öÇÔ¼ö, ¿ªÇÔ¼ö, »ï°¢ÇÔ¼ö¿¡ ´ëÇÑ ¹ÌÀûºÐ¿¡ ´ëÇÑ
theorem°ú definitionÀ» Á¤¸®ÇØ ³õÀº ¿µ¾îÀÚ·á
½ÃÇè Àü¿¡ Á¤¸®Çؼ­ º¸±â ÁÁÀº ÀÚ·áÀÓ.
¸ñÂ÷/Â÷·Ê
¸ñÂ÷ ¾øÀ½
º»¹®/³»¿ë
6. The Logarithm, the Exponential, and the Inverse Trigonometric Functions.

Definition. If x is a positive real number, we define the natural logarithm of x, denoted temporarily by L(x), to be the integral L(x) = .

Theorem 6.1. The logarithm function has the following properties:
(a) L(1) = 0
(b) L`(x) = 1/x for every x > 0
(c) L(ab) = L(a) + L(b) for every a > 0, b > 0
- t/a

Theorem. 6.2. For every real number b there is exactly one positive real number a whose logarithm, L(a) is equal to b.

Definition. We denote by e that number for which L(e) = 1.

Definition. If b > 0, b ¡Á 1, and if x > 0, the logarithm of x to the base b is the number
logbx = . where the logarithms on the right are natural logarithms.

Point. ¡ò 1/x dx = log x + C
Point. ¡ò du / u = log u +C
Point. ¡ò f`(x)dx / f(x) = log f(x) + C.

Point. L0(x) = log|x| = .
Definition. For any real x, we define E(x) to be that number y whose logarithm is x. That is, y=E(x) means that L(¡¦(»ý·«)
Âü°í¹®Çå
Definition. If x is a positive real number, we define the natural logarithm of x, denoted temporarily by L(x), to be the integral L(x) = .

Theorem 6.1. The logarithm function has the following properties:
(a) L(1) = 0
(b) L`(x) = 1/x for every x > 0
(c) L(ab) = L(a) + L(b) for every a > 0, b > 0
- t/a

Theorem. 6.2. For every real number b there is exactly one positive real number a whose logarithm, L(a) is equal to b.

Definition. We denote by e that number for which L(e) = 1.



📝 Regist Info
I D : schw****
Date : 2010-07-20
FileNo : 10980678

Cart