¸ñÂ÷/Â÷·Ê
[¼Ö·ç¼Ç] ÀüÀÚȸ·Î 5ÆÇ (ÀúÀÚ Sedra - Microelectronic Circuits 5th ed(OXFORD)) ¼Ö·ç¼Ç ÀÔ´Ï´Ù.
ÃÑ 1ÀåºÎÅÍ 14Àå±îÁöÀÇ ¼Ö·ç¼ÇÀ¸·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù.
°øºÎ ÇÒ ¶§ Á¤¸» µµ¿òÀÌ ¸¹ÀÌ ‰ç´ø ÀÚ·á ÀÔ´Ï´Ù. ¿¹½ÀÇÒ¶§³ª, º¹½ÀÇÒ¶§³ª ±×¸®°í ½ÃÇè±â°£¿¡ ƯÈ÷ ²À ÇÊ¿äÇÑ ÀÚ·áÀÔ´Ï´Ù..^^
º»¹®/³»¿ë
CHAPTER 1 1.1. Given the vectors M ¡ë ?10ax + 4ay ? 8az and N ¡ë 8ax + 7ay ? 2az , ?nd: a) a unit vector in the direction of ?M + 2N. ?M + 2N ¡ë 10ax ? 4ay + 8az + 16ax + 14ay ? 4az ¡ë (26, 10, 4) Thus a¡ë b) the magnitude of 5ax + N ? 3M: (5, 0, 0) + (8, 7, ?2) ? (?30, 12, ?24) ¡ë (43, ?5, 22), and |(43, ?5, 22)| ¡ë 48.6. c) |M||2N|(M + N): |(?10, 4, ?8)||(16, 14, ?4)|(?2, 11, ?10) ¡ë (13.4)(21.6)(?2, 11, ?10) ¡ë (?580.5, 3193, ?2902) 1.2. Given three points, A(4, 3, 2), B(?2, 0, 5), and C(7, ?2, 1): a) Specify the vector A extending from the origin to the point A. A ¡ë (4, 3, 2) ¡ë 4ax + 3ay + 2az b) Give a unit vector extending from the origin to the midpoint of line AB. The vector from the origin to the midpoint is given by M ¡ë (1/2)(A + B) ¡ë (1/2)(4 ? 2, 3 + 0, 2 + 5) ¡ë (1, 1.5, 3.5) The unit vector will be m¡ë (1, 1.5, 3.5) ¡ë (0.25, 0.38, 0.89) |(1, 1.5, 3.5)| (26, 10, 4) ¡ë (0.92, 0.36, 0.14) |(26, 10, 4)|
c) Calculate the length of the perimeter of triangle ABC: Begin wi¡¦(»ý·«)