ÀÚ·á¼³¸í
[ÆÇ¸ÅÁßÁö] ±¸¸Åȸ¿ø¿äû ÆÇ¸ÅÁßÁö(»çÀ¯) : ³»¿ë°ú ´Ù¸¨´Ï´Ù.. -------> Feedback Control of Dynamic Systems ÀÚµ¿Á¦¾î 4ÆÇ Franklin ¼Ö·ç¼Ç
2ÀåºÎÅÍ 9Àå±îÁö ¸ðµÎÀÖ½À´Ï´Ù.!!
º»¹®/³»¿ë
Chapter 2
Dynamic Models
Problems and Solutions for Section 2.1
1. Write the di?erential equations for the mechanical systems shown in Fig. 2.38. Solution: The key is to draw the Free Body Diagram (FBD) in order to keep the signs right. For (a), to identify the direction of the spring forces on the object, let x2 = 0 and ¨xed and increase x1 from 0. Then the k1 spring will be stretched producing its spring force to the left and the k2 spring will be compressed producing its spring force to the left also. You can use the same technique on the damper forces and the other mass.
(a) m1 x1 ¡§ m2 x2 ¡§ = ?k1 x1 ? b1 x1 ? k2 (x1 ? x2 ) u = ?k2 (x2 ? x1 ) ? k3 (x2 ? y) ? b2 x2 u 11
12
CHAPTER 2. DYNAMIC MODELS
Figure 2.38: Mechanical systems
13
m1 x1 ¡§ m2 x2 ¡§
= ?k1 x1 ? k2 (x1 ? x2 ) ? b1 x1 u = ?k2 (x2 ? x1 ) ? k3 x2
m1 x1 ¡§ m2 x2 ¡§
= ?k1 x1 ? k2 (x1 ? x2 ) ? b1 (x1 ? x2 ) u u = F ? k2 (x2 ? x1 ) ?¡¦(»ý·«)
2. Write the equations of motion o