ÀÚ·á¼³¸í
[ÆÇ¸ÅÁßÁö] ±¸¸Åȸ¿ø¿äû ÆÇ¸ÅÁßÁö(»çÀ¯) : 2Àå ¹®Á¦°¡ 32¹øºÎÅÍ ½ÃÀÛÇϴµî Á¦´ë·Î ³»¿ëÀÌ ¾øÀ½ -------> ½ÅÈ£¿Í ½Ã½ºÅÛ °³Á¤ 2ÆÇ ¼Ö·ç¼Ç Simon S. Haykin [signals_and_systems_2ed_-_haykin]
¸ñÂ÷/Â÷·Ê
½ÅÈ£¿Í ½Ã½ºÅÛ °³Á¤ 2ÆÇ ¼Ö·ç¼Ç Simon S. Haykin [signals_and_systems_2ed_-_haykin]
º»¹®/³»¿ë
CHAPTER 1
1.1 to 1.41 - part of text
1.42
(a) Periodic: Fundamental period = 0.5s (b) Nonperiodic (c) Periodic Fundamental period = 3s (d) Periodic Fundamental period = 2 samples (e) Nonperiodic (f) Periodic: Fundamental period = 10 samples (g) Nonperiodic (h) Nonperiodic (i) Periodic: Fundamental period = 1 sample
l.43
¥ð 2 y ( t ) = ? 3 cos ? 200t + -- ? ? ? ? 6? ?
2 ¥ð = 9 cos ? 200t + -- ? ? 6?
9 ¥ð = -- cos ? 400t + -- ? 1 ? 2 3? 9 (a) DC component = -2 9 ¥ð (b) Sinusoidal component = -- cos ? 400t + -- ? ? 2 3? 9 Amplitude = -2
1
200 Fundamental frequency = -------- Hz ¥ð
1.44
The RMS value of sinusoidal x(t) is A ? 2 . Hence, the average power of x(t) in a 1-ohm resistor is ( A ? 2 ) = A2/2.
2
1.45
Let N denote the fundamental period of x[N]. which is de?ned by 2¥ð N = ----§Ù The average power of x[n] is therefore 1 2 P = --- ¢² x [ n ] N 1 = --N
n=0 N -1 N -1
¢²A
n=0
2
A = ----N
n=0 2 N -1
2 2¥ðn cos ? --------- + ¥õ? ? N ? 2¡¦(»ý·«)