¸ñÂ÷/Â÷·Ê
[¼Ö·ç¼Ç] ÀÌ»ê¼öÇÐ 7ÆÇ ¼Ö·ç¼Ç (DISCRETE MATHEMATICS 7ÆÇ)- Johnsonbaugh
ÀÌ»ê¼öÇмַç¼Ç.pdf
ÇØ´ç ÀÚ·á´Â ÇØÇÇ·¹Æ÷Æ®¿¡¼ À¯·á°áÁ¦ ÈÄ ¿¶÷ÀÌ °¡´ÉÇÕ´Ï´Ù.
ºÐ·® : 99 ÆäÀÌÁö /pdf ÆÄÀÏ
¼³¸í : [¼Ö·ç¼Ç] ÀÌ»ê¼öÇÐ 7ÆÇ ¼Ö·ç¼Ç ÀÔ´Ï´Ù.
¿øÁ¦ : DISCRETE MATHEMATICS 7ÆÇ
ÀúÀÚ : Johnsonbaugh
¹üÀ§: 1Àå ~ 13Àå (annex Æ÷ÇÔ) ÀÔ´Ï´Ù. µµ¿ò µÇ±æ ¹Ù·¡¿ä.
[¼Ö·ç¼Ç] ÀÌ»ê¼öÇÐ 7ÆÇ ¼Ö·ç¼Ç ÀÔ´Ï´Ù.
¿øÁ¦ : DISCRETE MATHEMATICS 7ÆÇ
ÀúÀÚ : Johnsonbaugh
¹üÀ§: 1Àå ~ 13Àå (annex Æ÷ÇÔ) ÀÔ´Ï´Ù. µµ¿ò µÇ±æ ¹Ù·¡¿ä.
Ãâó : ÇØÇÇ·¹Æ÷Æ® ÀÚ·á½Ç
º»¹®/³»¿ë
Johnsonbaugh-50623
book
November 19, 2007
14:54
HINTS/SOLUTIONS TO
Selected Exercises
Section 1.1 Review
1. A set is a collection of objects. 2. A set may be de?ned by listing the elements in it. For example, {1, 2, 3, 4} is the set consisting of the integers 1, 2, 3, 4. A set may also be de?ned by listing a property necessary for membership. For example, {x | x is a positive, real number} de?nes the set consisting of the positive, real numbers. 3. Set Z Q R Z+ Q+ R+ Z? Q? R? Znonneg Qnonneg Rnonneg Description Integers Rational numbers Real numbers Positive integers Positive rational numbers Positive real numbers Negative integers Negative rational numbers Negative real numbers Nonnegative integers Nonnegative rational numbers Nonnegative real numbers Examples of Members ?3, 2 ?3/4, 2.13074 ¡î ?2.13074, 2 2, 10 3/4, 2.13074 ¡î 2.13074, 2 ?12, ?10 ?3/8, ?2.13074 ¡î ?2.13074, ? 2 0, 3 0, 3.13074 ¡î 0, 3
14. X is a proper subset of Y if X ¡ö Y and X = Y . X is a pro¡¦(»ý·«)