¸ñÂ÷/Â÷·Ê
ÃÑ 1ÀåºÎÅÍ 11Àå±îÁöÀÇ ¼Ö·ç¼ÇÀ¸·Î ±¸¼ºµÇ¾î ÀÖ½À´Ï´Ù. ¾Æ·¡´Â Ã¥ Ç¥ÁöÀÔ´Ï´Ù..^^
CALCULUS OF VARIATIONS
MA 4311 LECTURE NOTES and solutions
I. B. Russak
Department of Mathematics
Naval Postgraduate School
Code MA/Ru
Monterey, California 93943
July 9, 2002
c
1996 - Professor I. B. Russak
º»¹®/³»¿ë
CALCULUS OF VARIATIONS MA 4311 LECTURE NOTES
I. B. Russak Department of Mathematics Naval Postgraduate School Code MA/Ru Monterey, California 93943 July 9, 2002
c 1996 - Professor I. B. Russak
1
Contents
1 Functions of n Variables 1.1 Unconstrained Minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Constrained Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Examples, Notation 2.1 Notation & Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Shortest Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 First Results 3.1 Two Important Auxiliary Formulas: . . . . . . . . . . . . . . . . . . . . . . . 3.2 Two Important Auxiliary Formulas in the General Case . . . . . . . . . . . . 4 Variable End-Point Problems 4.1 The General Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Higher Dim¡¦(»ý·«)