º»¹®/³»¿ë
Introduction to Probability 2nd Edition Problem Solutions
(last updated: 7/31/08)
c
Dimitri P. Bertsekas and John N. Tsitsiklis
Massachusetts Institute of Technology
WWW site for book information and orders http://www.athenasc.com
Athena Scienti?c, Belmont, Massachusetts
1
CHAPTER 1
Solution to Problem 1.1. We have A = {2, 4, 6}, so A ¡ú B = {2, 4, 5, 6}, and (A ¡ú B)c = {1, 3}. On the other hand, Ac ¡û B c = {1, 3, 5} ¡û {1, 2, 3} = {1, 3}. Similarly, we have A ¡û B = {4, 6}, and (A ¡û B)c = {1, 2, 3, 5}. On the other hand, Ac ¡ú B c = {1, 3, 5} ¡ú {1, 2, 3} = {1, 2, 3, 5}. Solution to Problem 1.2. (a) By using a Venn diagram it can be seen that for any sets S and T , we have S = (S ¡û T ) ¡ú (S ¡û T c ). (Alternatively, argue that any x must belong to either T or to T c , so x belongs to S if and only if it belongs to S ¡û T or to S ¡û T c .) Apply this equality with S = Ac and T = B, to obtain the ?rst relation Ac = (Ac ¡¦(»ý·«)