¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
¿Ã·¹Æ÷Æ® : ´ëÇз¹Æ÷Æ®, Á·º¸, ½ÇÇè°úÁ¦, ½Ç½ÀÀÏÁö, ±â¾÷ºÐ¼®, »ç¾÷°èȹ¼­, Çо÷°èȹ¼­, ÀÚ±â¼Ò°³¼­, ¸éÁ¢, ¹æ¼ÛÅë½Å´ëÇÐ, ½ÃÇè ÀÚ·á½Ç
·Î±×ÀΠ ȸ¿ø°¡ÀÔ

ÆÄÆ®³Ê½º

ÀÚ·áµî·Ï
 

Àå¹Ù±¸´Ï

´Ù½Ã¹Þ±â

ÄÚÀÎÃæÀü

¢¸
  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (1 ÆäÀÌÁö)
    1

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (2 ÆäÀÌÁö)
    2

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (3 ÆäÀÌÁö)
    3

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (4 ÆäÀÌÁö)
    4

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (5 ÆäÀÌÁö)
    5


  • º» ¹®¼­ÀÇ
    ¹Ì¸®º¸±â´Â
    5 Pg ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
¢º
Ŭ¸¯ : Å©°Ôº¸±â
  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (1 ÆäÀÌÁö)
    1

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (2 ÆäÀÌÁö)
    2

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (3 ÆäÀÌÁö)
    3

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (4 ÆäÀÌÁö)
    4

  • Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   (5 ÆäÀÌÁö)
    5



  • º» ¹®¼­ÀÇ
    (Å« À̹ÌÁö)
    ¹Ì¸®º¸±â´Â
    5 Page ±îÁö¸¸
    °¡´ÉÇÕ´Ï´Ù.
  ´õºíŬ¸¯ : ´Ý±â
X ´Ý±â
Á¿ìÀ̵¿ : µå·¡±×

Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx

ÀÎ ¼â
¹Ù·Î°¡±â
Áñ°Üã±â Űº¸µå¸¦ ´­·¯ÁÖ¼¼¿ä
( Ctrl + D )
¸µÅ©º¹»ç ¸µÅ©ÁÖ¼Ò°¡ º¹»ç µÇ¾ú½À´Ï´Ù.
¿øÇÏ´Â °÷¿¡ ºÙÇô³Ö±â Çϼ¼¿ä
( Ctrl + V )
¿ÜºÎ°øÀ¯
ÆÄÀÏ  Ä«À̽ºÆ® °íÀü¿ªÇÐ ±â¸» Á·º¸.docx   [Size : 344 Kbyte ]
ºÐ·®   5 Page
°¡°Ý  1,000 ¿ø


īƮ
´Ù¿î¹Þ±â
īī¿À ID·Î
´Ù¿î ¹Þ±â
±¸±Û ID·Î
´Ù¿î ¹Þ±â
ÆäÀ̽ººÏ ID·Î
´Ù¿î ¹Þ±â
µÚ·Î

º»¹®/³»¿ë
2015 Classical Mechanics I Final-term Exam
2015. 6. 19 20:00 ~

1. (To be scored by Prof.)

2. (a) Show that the superposition principle does not hold for a nonlinear differential equation such as . Here is a constant. (4 points)

Let and are possible solutions of the differential equation. If we apply a trial superposition solution to the equation, then . Therefore, the superposition principle does not hold for such a nonlinear differential equation.
(b) Consider the system represented as
Here, is a small, positive constant. Show that the system has a simple limit cycle, and describe the motions of the variables with brief sketches. (6 points)
Change the variables as and . Then .
In similar, .
Let , then .
Finally, where ,
For large , in which , and . Thus this system has a simple limit cycle with and . Or and , and and . (4 points)
A brief sketch can be drawn as (¡¦(»ý·«)

3. Consider an isolated two-particle system consisting of and . Gravitational force is the only interaction between the particles. Solve this problem using Lagrange¡¯s or Hamilton¡¯s methods.

(a) Find the Lagrangian for the system. (2 points)

(b) Derive the equation of the motion for the position of the center-of-mass (CM), , and describe the motion. (3 points)

(c) Find the Lagrangian function and derive Lagrange equation for the system in the CM reference frame, which is defined by the condition, . (5 points)

4. (a) Consider a simple plane pendulum consisting of a mass attached to a string of length . After the pendulum is s




📝 Regist Info
I D : comm***
Date : 2017-04-03
FileNo : 17042292

Cart